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EFFECT OF ELASTICITY ON THE DYNAMICS

OF A SUPERCONDUCTING ROTOR ROTATING IN A MAGNETIC FIELD

UDC 531.3+537.8Yu. M. Urman and V. V. Novikov

A spherical shape of the outer surface of rotors of some types of noncontact gyroscopes gives rise to
conditions, where the force field ensures the stability of the center of mass relative to the base and
has an insignificant effect on the angular motion of the rotor. However, there are some effects (for
instance, the Barnett–London effect), which lead to emergence of moments of mechanical forces even
for spherical bodies. The effect of rotor elasticity on the motion of a superconducting deformable
spherical solid body in a magnetic field is studies. It is shown that the moment of mechanical forces
acting on the body in the magnetic field is proportional in the first approximation to the angular
velocity squared. The effect of this moment on the dynamics of angular motion of the rotor is
studied.

1. Effect of the Magnetic Field on a Rotating Superconducting Rotor. If the body is not rotating,
then the magnetic field H in the ambient space is a superposition of the fields generated by the sources H0 and
image currents H im in a thin surface layer of the superconductor and satisfies the following equations and conditions
at the outer surface of the rotor S1 and far from it [1]:

rotH = 0, divH = 0, H · n(1)
0 = 0 on S1, H im → 0 as |r| → ∞. (1.1)

Here n(1)
0 is the vector normal to the surface S1.
Noncontact retention of the body is ensured by the magnetic pressure P = (H2/(8π))n(1)

0 , which is caused
by the discontinuity of the components of the Maxwell stress tensor on S1. The magnetic pressure is the reason
for rotor deformation. Depending on the magnitude of the magnetic field and elastic properties of the body, this
deformation is either ignored as being small or is taken into account as a certain small initial deviation of the outer
surface of the rotor from the spherical shape.

During rotation, the rotor is deformed, which leads to the disturbance of the magnetic fieldH im characterized
by the vector H1, for which we have the problem

rotH1 = 0, divH1 = 0, H1 · n(1)
0 +H · n(1)

1 = 0 on S1,
(1.2)

H1 → 0 as |r| → ∞,

where n(1)
1 is a correction to n(1)

0 that is caused by the disturbance of the body surface due to rotation.
In addition to the coordinate system Xi (i = 1, 2, 3) attached to the sources of the magnetic field, in which

we calculate H and H1, we introduce the coordinate system Zi. The common origin of these coordinate systems
is a fixed point (center of mass). The body as a whole does not move in the coordinate system Zi rotating with an
angular velocity ω. Therefore, the following integral relations are valid:∫

V

U dV = 0,
∫
V

r ×U dV = 0 (1.3)
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(U is the strain vector). Hereinafter we use dimensionless variables and parameters. The scale factors for the
corresponding physical quantities are the rotor radius R, the characteristic time of its motion as a whole t∗ (rotation
of the coordinate system Zi relative to Xi), and the parameter H∗ characterizing the external magnetic field.

The rotor has a cavity designed to decrease the mass of the body suspended in the magnetic field and ensure
its rotation in a prescribed direction (the relation between the moments of inertia in the initial state is determined
by the equality I0

11 = I0
22 = I0

33).
The equations of motion of the volume element and the conditions on the rotor surface in the coordinate

system Zi have the following form:

(χ+ 1) grad divU + ∆U = ε(Ü + F ), (1.4)

(σij − δTij)(n(1)
0j + n

(1)
1j ) = 0 on S1, σij(n

(2)
0j + n

(2)
1j ) = 0 on S2. (1.5)

Here χ = λ/µ (λ and µ are the Lamé constants), ε = ρR2/(µt2∗), ρ is the density, δ = H2
∗/µ, F = ω × (ω × r)

+ ω̇ × r + 2ω̇ × U̇ is the vector of inertia forces, σij is the stress tensor, n(2) = n
(2)
0 +n(2)

1 is the vector normal to
the inner surface S2, and Tij = (1/(4π))(HiHj − δijH2/2).

Generally speaking, the rotor experiences also the action of nonelectromagnetic surface and volume forces,
which should be reflected in Eqs. (1.4) and (1.5). The force of gravity and the resistance of the ambient medium
may serve as examples. We assume that the effect of these forces on rotor deformation is negligibly small.

We consider only the angular motion of the rotor, which is possible if the frequencies of angular motion are
significantly smaller than the lower frequency of elastic eigenoscillations of the body (i.e., the inequality ε � 1 is
valid) [2].

We represent the strain vector U(r, t) as a series in the parameters ε and δ:

U = εU1 + δεU2 + . . . . (1.6)

Substituting U into (1.3)–(1.5), we obtain the problem∫
V

U1 dV = 0,
∫
V

r ×H1 dV = 0, (χ+ 1) grad divU1 + ∆U1 = F (1),

(1.7)

σ
(1)
ij n

(k)
0j = 0 on Sk (k = 1, 2),

where σ(1)
ij = σij(U1m) is the stress tensor calculated on the basis of U1 and F (1) = ω × (ω × r) + ω̇ × r.

In accordance with (1.7), the first term of series (1.6) is the deformation of the freely rotating body in the
absence of the magnetic field.

To find the vector U2(r, t), one has to consider together the electrodynamic equations for H and H1 = εh

and the system of equations∫
V

U2 dV = 0,
∫
V

r ×H2 dV = 0, (χ+ 1) grad divU2 + ∆U2 = 0,

(σ(2)
ij − tij)n

(1)
0j − T

(0)
ij n

(1)
1j = 0 on S1, σ

(2)
ij n

(2)
0j = 0 on S2,

where σ(2)
ij = σij(U2m), n(1)

1j = ε∆nj(U1m), and tij = (1/(4π))(Hihj +Hjhi − δijh ·H).
It is assumed that the outer surface of the body in the nondeformed state is spherical. If the surface is not

spherical, system (1.7) remains unchanged, and S1 should be considered as a spherical surface in calculating U1.
The effect of nonsphericity is manifested in calculating the subsequent terms of series (1.6).

The motion of the rotor is determined by the vector H(r, t) and the angular velocity ω(t). System (1.7) has
the solutions U1 and ω corresponding to free motion of a perfectly rigid body with the main moment of inertia I0

ii.
If we consider the following approximation in terms of the small parameters of the problem, we can find U2 and the
correction to ω, which takes into account the elastic properties of the rotor. However, it is also possible to derive
the equations for the components of the angular velocity without solving this complicated problem.

2. Equations of Motion of the Deformable Rotor. We perform vector multiplication of (1.4) by r+U
and integrate it over the body volume, taking into account conditions (1.5). Substituting εU1 instead of U into the
resultant equation, we obtain
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K̇ + ω ×K = M(H), (2.1)

where Ki = I0
iiωi + εI

(1)
ij ωj are the components of the kinetic moment vector, I1

ij = 2
∫
V

(rkU1kδij − riU1j) dV , and

M is the moment of forces caused by deformation and the magnetic field.
We transform Eq. (2.1) to the form, which it would have in the case of a perfectly rigid body:

K(0) + ω ×K(0) = M el +M(H), K
(0)
i = I

(0)
ij ωj . (2.2)

The transition from a deformable rotor to the model of a perfectly rigid body is natural from the viewpoint
of engineering calculations of gyroscope motion and processing of experimental data. Rotor elasticity is taken into
account by the moment of forces M el in the right part of Eq. (2.2), which depends only on elastic properties of the
body and angular velocity. The moment M(H) is caused by deformation of the rotating rotor in an undisturbed
field and is written as

M = δ

∫
S1

r × T dS.

Thus, the problem of angular motion of a deformable superconducting rotor in a magnetic field reduces
to studying the angular motion of a perfectly rigid body under the action of the moments M el and M(H). To
calculate them, one has to know only the deformation of the body during its rotation in the absence of the magnetic
field.

3. Angular Motion of the Deformable Rotor in a Magnetic Field. We assume that the external
field is axisymmetric, and the OX3 axis coincides with the axis of suspension. In the approximation considered, Zi
is a coordinate system rigidly attached to the perfectly rigid body; the axes are directed along the main axes of
the ellipsoid of inertia (I0

11 ≈ I0
22 ≈ I0

33). We also introduce a coordinate system Yi attached to the kinetic moment
vector of the perfectly rigid body; the directions OY3 and K(0) coincide.

We study the rotor motion, which is interpreted as the motion of the kinetic moment vector K(0) relative
to Xi, and the superimposed motion of the body (coordinate system Zi) relative to K(0). The equation of motion
of the vector K(0) in the coordinate system Xi has the form dK0/dt = M el +M(H).

The position of the coordinate system Zi relative to Yi is set by the Euler angles. Then, the rotor motion
relative to the kinetic moment vector is determined by the following system:

α̇ = K(0)
(cos2 γ

I0
11

+
sin2 γ

I0
22

)
− 1
K(0)

(
cot ρ

dV

dρ
+ cotβ

dV

dβ

)
,

β̇ = K(0)
( 1
I0
22

− 1
I0
11

)
sinβ sin γ cos γ +

1
K(0) sinβ

(
cosβ

∂V

∂α
− ∂V

∂γ

)
,

γ̇ = K(0) cosβ
( 1
I0
33

− cos2 γ

I0
11

− sin2 γ

I0
22

)
+

1
K(0) sinβ

∂V

∂β
.

Here α, β, and γ are the angles of precession, nutation, and own rotation, respectively, and ρ is the angle between
the OX3 and OY3 axes.

We represent the force function V corresponding to the moments M el and M(H) for the rotor rotating in
an axisymmetric field as a scalar product of irreducible tensors [3, 4], which is convenient for solving the problem.
It takes into account the increment of the kinetic energy due to the own elasticity of the body and the energy of
interaction of the undisturbed field with the body deformed in the course of rotation, which had a spherical surface
in the initial state.

Elastic properties of the body taken into account, its kinetic energy T0 = I0
iiω

2
i /2 increases by Tel =

εαijklωiωjωkωl. From four vectors ω, we can compose only the scalar ω4 and irreducible tensors of the second
and fourth ranks ω2{ω1 ⊗ ω1}2 and {{{ω1 ⊗ ω1}2 ⊗ ω1}3 ⊗ ω1}4, which are expressed through the spherical
functions [3]:

{ω1 ⊗ ω1}2m = ω2

√
2
3
Y2m(e), {{{ω1 ⊗ ω1}2 ⊗ ω1}3 ⊗ ω1}4m = 2

√
2
35
ω4Y4m(e).

Then, the energy Tel may be represented as
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Tel = εω4[a0 + a2 · Y2(e) + a4 · Y4(e)]. (3.1)

Here Ylm(e) is a spherical function determined without the term
√

2l + 1/(4π), e is a unit vector directed along ω,
a0 is a scalar, a2 and a4 are, respectively, the irreducible tensors of the second and fourth ranks, which consist of
the components of the tensor αijkl, and {Pn ⊗ qn}s is the tensor product of two irreducible tensors of the same
rank [3].

The generic expression for Tel includes 15 independent components, since the tensors a2 and a4 have five
and nine components, respectively. The symmetry of the body may reduce the number of independent components
of Tel [5].

The relationship between the moments of inertia I0
ii is determined by the internal cavity in the rotor. The

quantities a0, a2, and a4 are functions of the parameters that characterize the cavity and, hence, depend on the
moments of inertia. Since the main moments are close in magnitude in our case, we may confine ourselves to the
first term in Eq. (3.1), because the order of the parameters a2 and a4 is determined (in contrast to a0) by the
difference in the moments of inertia.

The energy of interaction of the undisturbed field and the elastic body, which depends on the moment M2,
is a quadratic function of ω and H. There are two preferential directions of ω and η (η is the unit vector directed
along OX3). From two vectors η, we can construct a scalar and a second-rank tensor. This also refers to the angular
velocity ω. Therefore, the energy VH is expressed through irreducible tensors as

VH = δ[Bω2 + (d/2)({η1 ⊗ η1}2 · {ω1 ⊗ ω1}2)],

where B and d are constants depending on the field harmonics and elastic constants of the body.
Using the relation {η1 ⊗ η1}2 · {ω1 ⊗ ω1}2 = (η · ω)2 − ω2/3 [3], we can reduce the expression VH to

VH = δ[B̃ω2 + (d/2)(η · ω)2]. The generic form of the moment M(H) calculated using VH is

M(H) = d(η · ω)(η × ω). (3.2)

Thus, the force function V in the approximation considered is found from the formula

V = εaω4 + δ[B̃ω2 + (d/2)(η · ω)2]. (3.3)

Owing to the presence of small parameters in (3.3), the kinetic energy of a perfectly rigid body is significantly
greater than the maximum value of the force function. Since the moments of inertia are close, we assume that
I0
ii = I0 +δ∗Ĩii (I0 is the moment of inertia of a sphere and δ∗ is a small parameter of the same order as ε and δ). In

the zero approximation, we obtain K0 = const, β = β0 = const, γ = γ0 = const, and α̇ = K0/I0, i.e., ω = K0/I0.
Substituting ω into (3.2) and (3.3), we obtain the following equations in the first approximation:

dK0

dt
=

δd

(I0)2
(η ×K0)(η ·K0), α̇ = K0

(cos2 γ

I0
11

+
sin2 γ

I0
22

)
,

(3.4)
β̇ = K0

( 1
I0
22

− 1
I0
22

)
sinβ sin γ cos γ, γ̇ = K0 cosβ

( 1
I0
33

− cos2 γ

I0
11

− sin2 γ

I0
22

)
.

It follows from the first equation in (3.4) that |K0| = const and η ·K0 = const, i.e., the projection of the
vector K0 onto the direction η remains constant.

Thus, in the approximation considered, the kinetic moment K0 whose magnitude remains constant precesses
around the vector η with a constant angle of precession. The precession velocity is determined by the equality

Ωpr =
δd

I2
0

K0 cos ρ =
δd

I2
0

K0 · η,

and the body performs free Euler–Poisson’s motion around the kinetic moment vector. The precession velocity α̇

differs from the corresponding characteristics of free nutation of the body by a small quantity.
In conclusion, we make the following comments. Deformation of the rotor during its rotation may be

considered (similarly to the London moment [6, 7] or disbalance [8]) as an inhomogeneity acting on the displacement
gauge. The signal from the gauge changes the current in supporting coils, which leads to force actions on the rotor.
Since there are correcting circuits in the control system, an accelerating or decelerating moment averaged over the
revolution appears as a result of self-modulation of the suspension current.

The motion of an electrostatic gyroscope may be studied in a similar manner by substituting the vector
H by the electric field strength E and changing the boundary conditions of the electrodynamic problems (1.1)
and (1.2).

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-00129).

521



REFERENCES

1. L. D. Landau and E. M. Lifshitz, Theoretical Physics. Electrodynamics of Continuous Media [in Russian], Vol. 7,
Nauka, Moscow (1982).

2. F. L. Chernous’ko, “Effect of own elasticity and dissipation on the motion of a solid body relative to the center of
mass,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 41, Novosibirsk (1979),
pp. 118–122.

3. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of the Angular Moment [in Russian],
Nauka, Leningrad (1975).

4. Yu. M. Urman, “Irreducible tensors and their application in problems of motion of a solid body,” in: Mechanics
of the Solid Body (collected scientific papers) [in Russian], No. 15, Naukova Dumka, Kiev (1983), pp. 75–87.

5. G. P. Denisov and V. V. Novikov, “Free motion of a deformable solid body close to a sphere,” Izv. Akad. Nauk
SSSR, Mekh. Tverd. Tela, No. 3, 43–50 (1983).

6. Yu. M. Urman, “The Barnett–London effect and its influence on the angular motion of a solid body in a magnetic
field,” Zh. Tekh. Fiz., 56, No. 11, 2081–2086 (1986).

7. Yu. M. Urman, “The Barnett–London effect and its influence on the motion of a superconducting rotor in a
nonuniform magnetic field,” Zh. Tekh. Fiz., 68, No. 8, 10–14 (1998).

8. R. V. Lin’kov and Yu. M. Urman, “Effect of the suspension-adjustment system on the motion of a disbalanced
rotor of a noncontact gyroscope,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 5–12 (1986).

522


